Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

2 Basics

3 Fusion category

4 Categorical coset theory

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

$\operatorname{Content}$

Introduction

Basics

Fusion category

Categorical coset theory

Main results

What is the coset construction?

In the language of vertex operator algebra:

- $\bullet~V:$ a vertex operator algebra
- $U \subset V$: a subalgebra
- The coset vertex operator algebra U^c : the centralizer of U in V; U^c is also called the commutant of U in V.
- Coset theory studies the representations of U^c in terms of representations of U and V

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Rationality

- A vertex operator algebra is rational if the Z₊-graded module category is semisimple (analogue of finite dimensional semisimple associative algebra and Lie algebra)
- (Dong-Li-Mason 1998) If V is rational then there are only finitely many inequivalent irreducible V-modules

Coset theory conjecture

If U and V are rational vertex operator algebras then U^c is rational.

Remark

This conjecture explains why coset theory is important

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

The origin

- L(c, h)-the irreducible highest weight module for the Virasoro algebra with central charge c and highest weight h
- Which L(c, h) is unitary?
- (Goddard-Kent-Olive 1986) Coset construction was introduced to prove the untarity of $L(c_m, h_{rs}^m)$ where

$$c_m = 1 - \frac{6}{(m+1)(m+2)}$$

for $m = 1, 2, 3, \cdots$ and

$$h = h_{r,s}^m = \frac{[(m+2)r - (m+1)s]^2 - 1}{4(m+1)(m+2)}$$
$$(r, s \in \mathbb{N}, 1 \le s \le r \le m)$$

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

History

- There are hundreds of papers in physics on coset constructions (affine vertex operator algebras or WZW models)
- (Frenkel-Zhu 1992) Formulation of coset construction in the language of vertex operator algebras
- (Xu 1999-2000, 2007) The algebraic coset conformal field theory and mirror extensions (in the language of conformal nets)
- (MaRae 2021) If U and V are rational, U, V, U^c are C_2 cofinite then U^c is rational.
- Most study on coset theory focus on examples

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Representation theory of U^c :

- Rationality of U^c (Coset theory conjecture)
- Classification of irreducible U^c-modules

Our work

- Categorical coset constructions: main results are proved in categorical setting
- Apply results on categorical coset constructions to VOA coset constructions: assume $(U^c)^c = U$ and U, U^c, V are regular. We use irreducible U-modules and V-modules to determine irreducible U^c -modules

2. Basics

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

Let $V = (V, Y, \mathbf{1}, \omega)$ be a vertex operator algebra.

- V is called rational if any \mathbb{Z}_+ -graded module is completely reducible
- V is C₂-cofinite if dim $V/C_2(V) < \infty$ where

$$C_2(V) = \langle u_{-2}v | u, v \in V \rangle$$

This condition is needed to prove the formal characters convergent to holomorphic functions in the upper half plane

• V is rational and C_2 -cofinite iff V is regualr: any weak V-module is completely reducible (Li 1999, Abe-Buhl-Dong 2004, Dong-Yu 2012)

2. Basics

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theor

Main results

• $U = (U, Y, \mathbf{1}, \omega^1)$ is a vertex operator subalgebra of V. The commutant or centralizer of U in V

$$U^{c} = \{ v \in V | [Y(u, z_{1}), Y(v, z_{2})] = 0, u \in U \}$$
$$= \{ v \in V | u_{n}v = 0, u \in U, n \ge 0 \}$$

is a vertex operator algebra if $L(1)\omega^1 = 0$ (Frenkel-Zhu 1992). U^c is called the coset construction in physics

2. Basics

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

 $\operatorname{Content}$

Introduction

Basics

Fusion category

Categorical coset theory

Main results

- If V is rational and C_2 -cofinite, the V-module category \mathcal{C}_V is a modular tensor category with tensor product \boxtimes (Huang 2008)
- If V is rational then there are only finite many irreducible modules $M^1, \cdots M^p$ up to isomorphism and

$$M^i \boxtimes M^j = \sum_{k=1}^p N_{i,j}^k M^k$$

where the multiplicities N^k_{i,j} are called the fusion rules
A V-module M is called a simple current if for any irreducible V-module N, M ⊠ N is irreducible

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Fusion category

- A fusion category over C is a C-linear semisimple rigid category with finitely many simple objects and finite dimensional morphism spaces such that the unit object 1 is simple, ⊗, the dual object of X : X'
- $K(\mathcal{C})$: Grothendieck ring of a fusion category of \mathcal{C}
- $O(\mathcal{C}) =$ set of equivalence classes of the simple objects
- The Frobenius-Perron dimension: Unique ring homo FPdim : $K(\mathcal{C}) \to \mathbb{R}$, FPdim $(M) \ge 1$ for any nonzero object M [Etingof-Nikshych-Ostrik2005].
- FPdim(M) is exactly the quantum dimension [Dong-Jiao-Xu2013, Dong-Ren-Xu2018] in the theory of vertex operator algebra
- FPdim(\mathcal{C}) = $\sum_{M \in \mathbf{O}(\mathcal{C})} FPdim(M)^2$.

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Braided fusion category

- A braided fusion categories is a fusion category \mathcal{C} endowed with a braiding $c_{X,Y}: X \otimes Y \to Y \otimes X$
- Its reverse category \overline{C} is the same fusion category with a new braiding $\overline{c}_{X,Y} = c_{Y,X}^{-1}$. A braided fusion category is symmetric if $\overline{c} = c$.
- Two braided fusion categories \mathcal{C} and \mathcal{D} are braided equivalent if there is functor $F : \mathcal{C} \to \mathcal{D}$ such that $F(c_{X,Y}) = c_{F(X),F(Y)}$ (preserving the braiding)

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Modular tensor category

- \mathcal{C} is a braided fusion category
- For any X and any $f: X \to X$, can define tr(f)
- There is a set of isomorphisms $\theta_X : X \to X$ such that $\theta_{X \otimes Y} = c_{Y,X} c_{X,Y} \theta_X \otimes \theta_Y, \ \theta_i : X_i \to X_i \ (X_i \text{ are simple objects}).$
- s = (s_{i,j}) is nondegenerate where s_{i,j} = tr(c_{X_j,X_i}c_{X_i,X_j}) and c_{X_j,X_i}c_{X_i,X_j} : X_i ⊗ X_j → X_i ⊗ X_j
 dim(X) = tr(id_X)

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Regular algebra

- Let \mathcal{C} be a braided fusion category, A regular (commutative and separable) algebra A is an object in \mathcal{C} with a product $\mu : A \otimes A \to A$ and $\text{Hom}(\mathbf{1}, A)$ is 1-dimensional
- There is a notion of A-module, local A-module in \mathcal{C} . \mathcal{C}_A is the category of A-modules in \mathcal{C} , the category of local A-modules \mathcal{C}_A^0 in \mathcal{C} is a subcategory of \mathcal{C}_A . \mathcal{C}_A is a fusion category and \mathcal{C}_A^0 is a braided fusion category
- If \mathcal{C} is a modular tensor category, so is \mathcal{C}^0_A

4. Categorical coset theory

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Setting

- C_1, C_2 : modular tensor categories
- $\mathbf{O}(\mathcal{C}_1) = \{ W^{\alpha} | \alpha \in J \}, W^1 = 1_{\mathcal{C}_1}$
- $\mathbf{O}(\mathcal{C}_2) = \{ N^{\phi} | \phi \in K \}, N^1 = 1_{\mathcal{C}_2}$
- A: regular commutative algebra in $\mathcal{C}_1 \otimes \mathcal{C}_2$
- $\mathcal{C} = (\mathcal{C}_1 \otimes \mathcal{C}_2)^0_A$ is also a modular tensor category
- $\mathbf{O}(\mathcal{C}) = \{M^i | i \in I\}$ with $1 \in I$ and $M^1 = A$.
- $M^i \cong \bigoplus_{\alpha \in J} W^{\alpha} \otimes M^{(i,\alpha)}$ as objects in $\mathcal{C}_1 \otimes \mathcal{C}_2$ for $i \in I$.

Assumptions

- C_1, C_2 are pseudo unitary : for any X in C_1, C_2 , FPdim $(X) = \dim(X)$
 - **2** $M^{(1,1)} = 1_{\mathcal{C}_2}$ and $\operatorname{Hom}_{\mathcal{C}_2}(1_{\mathcal{C}_2}, M^{(1,\alpha)}) = \delta_{1,\alpha}$

4. Categorical coset theory

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Goal

- Decompose M^(i,α) into a direct sum of simple objects in C₂
- Identify simple direct summands from M^(i,α) with simple direct summands from M^(j,β)

Notations

•
$$(i, \alpha) = M^{(i,\alpha)}, J_i = \{ \alpha \mid (i, \alpha) \neq 0 \}$$

• For $\alpha \in J$, $\phi \in K$ set

$$a_{\alpha\otimes\phi} = A \boxtimes_{\mathcal{C}_1\otimes\mathcal{C}_2} (\alpha\otimes\phi) \in (\mathcal{C}_1\otimes\mathcal{C}_2)_A$$

 $a_{1\otimes(i,\alpha)} = A \boxtimes_{\mathcal{C}_1\otimes\mathcal{C}_2} (1_{\mathcal{C}_1}\otimes(i,\alpha)) \in (\mathcal{C}_1\otimes\mathcal{C}_2)_A$

• $\langle X, Y \rangle = \dim \operatorname{Hom}_{\mathcal{D}}(X, Y)$ for any fusion category \mathcal{D} and $X, Y \in \mathcal{D}$

4. Categorical coset theory

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

- \mathcal{F}_1 : the fusion subcategory of \mathcal{C}_1 generated by W^{α} for $\alpha \in J_1$
- \mathcal{F}_2 : the fusion subcategory of \mathcal{C}_2 generated by the simple objects appearing in $(1, \alpha)$ for $\alpha \in J_1$.

Recall $A = \bigoplus_{\alpha \in J_1} W^{\alpha} \otimes (1, \alpha)$

Schur-Weyl duality

Let $\alpha, \beta \in J_1$. Then

- $\bullet (1, \alpha) \text{ is simple,}$
- **2** $(1, \alpha)$ and $(1.\beta)$ are isomorphic iff $\alpha = \beta$,
- \mathcal{F}_1 and $\overline{\mathcal{F}_2}$ are braided equivalent.

This result was essentially obtained by Lin in 2017.

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introductio

Basics

Fusion category

Categorical coset theory

Main results

Kac-Wakimoto Set

$$\mathrm{KW} = \{(i,\alpha) | \langle 1_{\mathcal{C}_2}, (i,\alpha) \rangle \ge 1, i \in I, \alpha \in J_i \}$$

Properties

- If $(i, \alpha) \in KW$ then $(i', \alpha') \in KW$.
- $(i, \alpha), (i, \beta) \in KW$, then $\alpha = \beta$ and $\langle 1_{\mathcal{C}_2}, (i, \alpha) \rangle = 1$.
- If $(i, \alpha) \in \mathrm{KW}$ then $M^i = a_{\alpha \otimes 1}$
- $(i, \alpha) \in \text{KW}$ iff $W^{\alpha} \in C_{\mathcal{C}_1}(\mathcal{F}_1)$ where the Müger centralizer

$$C_{\mathcal{C}}(\mathcal{F}_1) = \{ Y \in \mathcal{C}_1 | c_{Y,X} \circ c_{X,Y} = id_{X \otimes Y} \forall X \in \mathcal{F}_1 \}$$

a braided fusion subcategory of C_1

Kac-Wakimoto Set

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

• Let $\mathcal{C}^{\mathrm{KW}}$ be the fusion subcategory of \mathcal{C} generated by M^i for $(i, \alpha) \in \mathrm{KW}$, $\mathcal{C}_1^{\mathrm{KW}}$ the fusion subcategory of \mathcal{C}_1 generated by W^{α} for $(i, \alpha) \in \mathrm{KW}$. Then

 $\mathbf{O}(\mathcal{C}^{\mathrm{KW}}) = \{ M^i | (i, \alpha) \in \mathrm{KW} \},\$

$$\mathbf{O}(\mathcal{C}_1^{\mathrm{KW}}) = \{ W^{\alpha} | (i, \alpha) \in \mathrm{KW} \},\$$

 $\mathcal{C}^{\mathrm{KW}}$ and $\mathcal{C}_{1}^{\mathrm{KW}}$ are braided equivalent.

Remark

The importance of KW-set was first noticed by Kac-Wakimoto in 1988 when they studied the coset vertex operator superalgebras associated to affine vertex operator superalgebras. KW-set plays an essential role for decomposing (i, α) into a direct sum of simple objects in C_2 .

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

$\mathcal{C}^{\mathrm{KW}}$ -orbit

- Define an equivalence relation \sim on $\mathbf{O}(\mathcal{C})$ as follows: $M \sim N$ iff there exists $(i, \alpha) \in \mathrm{KW}$ such that N is a submodule of $M \boxtimes M^i$.
- The equivalence of M is called a $\mathcal{C}^{\mathrm{KW}}\text{-orbit}$

• Orbit decomposition
$$\mathbf{O}(\mathcal{C}) = \bigcup_{\xi \in \Psi} \mathcal{O}_{\xi}$$

Remark

If V is a vertex operator algebra, G is a finite automorphism group of V then G acts on the set of all twisted modules. If two twisted modules in the same orbit they are isomorphic as V^{G} -modules, the irreducible V^{G} -modules come from different orbits are inequivalent.

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Example

- $A = 1_{\mathcal{C}_1} \otimes 1_{\mathcal{C}_2},$
- $KW = \{(W \otimes 1_{\mathcal{C}_2}, W) | W \in \mathbf{O}(\mathcal{C}_1)\}$
- $\mathcal{C}^{KW} = \mathcal{C}_1 \otimes 1_{\mathcal{C}_2}$
- \mathcal{C}^{KW} -orbits $\mathbf{O}(\mathcal{C}_1) \otimes X$ for $X \in \mathbf{O}(\mathcal{C}_2)$

Theorem

- If M^s, M^t ∈ O_ξ then the simple objects of C₂ appearing in M^s and M^t are the same
- If M^s ∈ O_ξ, M^t ∈ O_ψ and ξ, φ are different, then simple objects of C₂ appearing in M^s and M^t are inequivalent

Remark

This result is called the field identification in the literature by Fuchs-Schellekens-Schweigert

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Kac-Wakimoto set and S-matrix

- \dot{s}, \ddot{s}, s are nomalized *s*-matrices associated to C_1, C_2 and C.
- \dot{S}, \ddot{S}, S are the corresponding linear on $K(\mathcal{C}_1), K(\mathcal{C}_2), K(\mathcal{C})$
- $\ddot{S}(i,\alpha) = \sum_{j \in I, \beta \in J_j} \overline{\dot{s}_{\alpha,\beta}} s_{i,j}(j,\beta)$ (This result was given for branching functions associated to affine Kac-Moody algebras by Kac-Perteson in 1981)
- Every simple object in C_2 occurs in M^i for some $i \in I$ (This result was given in VOA setting by Krauel-Miyamoto in 2015)

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

For $i \in I$ and $\alpha \in J_i$, set $b(i, \alpha) = \sum_{(j,\beta) \in KW} \overline{\dot{s}_{\alpha\beta}} s_{ij}$.

Theorem

for all $i \in I, \alpha \in J_i$,

$$\dim(i,\alpha) = \frac{b(i,\alpha)}{b(1,1)}$$

In particular,
$$b(i, \alpha) \neq 0$$
.

Remark

The $b(i, \alpha)$ was introduced by Kac-Peterson, Kac-Wakimoto to study the coset constructions for affine Kac-Moody algebras. Kac-Wakimoto conjectured that $b(i, \alpha) \neq 0$ for $\alpha \in J_i$. This theorem asserts that Kac-Wakimoto conjectrue in the coset setting associated with modular tensor categoies is always true. If the categories come from VOAs, $b(i, \alpha) > 0$.

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Set
$$d_{(i,\alpha)} = \dim_{\mathcal{C}_2}(i,\alpha), \ d_i = \dim_{\mathcal{C}} M^i, \ d_\alpha = \dim_{\mathcal{C}_1} W^{\alpha}$$

Theorem

5

- The following are equivalent:
 - $O(\mathcal{C}^{KW})$ forms a group
 - $d_{(i,\alpha)} = d_i d_\alpha \text{ for all } i \in I, \alpha \in J_i$
 - **3** For any $\alpha \in J$, $W^{\alpha'} \boxtimes W^{\alpha} = \sum_{\gamma \in J_1} N^{\gamma}_{\alpha,\alpha'} W^{\gamma}$ where $W^{\alpha'}$ is the dual of W^{α}

Remark

Kac-Wakimoto also gave a Hypothesis that $s_{ij}\dot{s}_{\alpha\beta} \geq 0$ for $(j,\beta) \in \text{KW}$ and $\alpha \in J_i$ for coset constructions associated to affine Kac-Moody algebras. We prove this hypothesis in modular tensor category setting with the assumption in the previous theorem.

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

Theorem

et
$$i \in I, \alpha \in J_i$$
.

• dim Hom_{C₂}((*i*, α), (*i*, α)) $\leq \sum_{(j,\beta)\in KW} N^{\beta}_{\alpha',\alpha} N^{j}_{i',i}$ where $W^{\alpha'} = (W^{\alpha})'$ and $M^{j'} = (M^{j})'$ • $d_{(i,\alpha)} = d_i d_{\alpha}$ iff

$$\dim \operatorname{Hom}_{\mathcal{C}_2}((i,\alpha),(i,\alpha)) = \sum_{(j,\beta)\in \operatorname{KW}} N_{\alpha',\alpha}^{\beta} N_{i',i}^{j}$$

• If KW = {(1,1)} then $O(\mathcal{C}_2) = \{(i,\alpha) | i \in I, \alpha \in \Lambda_i\}$. That is, all (i,α) are simple and inequivalent.

Remark

(1) gives an upper bound of dim Hom_{C_2}($(i, \alpha), (i, \alpha)$). But it does not tell us the exact number of simple objects of C_2 appearing in (i, α) . An investigation is in progress

As

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

 $Fusion \\ category$

Categorical coset theory

Main results

ssume that
$$G = \mathbf{O}(\mathcal{C}^{\text{KW}})$$
 forms a group. Set
$$H = \{W^{\beta} \in \mathbf{O}(\mathcal{C}_{1}^{\text{KW}}) | a_{\beta \otimes 1} \in \mathbf{O}(\mathcal{C}^{\text{KW}})\} \cong G$$

For $i \in I, \alpha \in J_i$ set

$$H^{i} = \{h \in H | a_{h \otimes 1} \boxtimes_{A} M^{i} = M^{i}\}$$

$$H^{(i,\alpha)} = \{ h \in H^i | h \boxtimes_{\mathcal{C}_1} W^\alpha = W^\alpha, a_{h \otimes 1} \boxtimes_A M^i = M^i \}.$$

Proposition

- If $a_{\beta \otimes 1} \in H^i$ then $\beta \in J_1$ and $a_{\beta \otimes 1} = a_{1 \otimes (1,\beta')}$
- **2** H^i acts on the set $\{(W^{\gamma}|\gamma \in J_i\}$ by tensor product
- ③ {(1,β)|W^β ∈ Hⁱ} is a group isomorphic to Hⁱ and acts on {(i, γ)|γ ∈ J_i} by tensor product

Theorem

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

• If M^i, M^j are in the same *G*-orbits then

$$\{(i,\gamma)|\gamma\in J_i\}=\{(j,\lambda)|\lambda\in J_j\}$$

- (*i*, α) = $\bigoplus_{s=1}^{t} nX_s$ where $X_s \in \mathbf{O}(\mathcal{C}_2)$ are inequivalent, $n^2 t = o(H^{(i,\alpha)})$, and dim $X_s = \frac{1}{nt} d_i d_\alpha$ for all s
- **3** If $H^{(i,\alpha)}$ is cyclic, then $(i,\alpha) = \bigoplus_{s=1}^{t} X_s$
- (i, α) ≅ (i, γ) if and only if W^γ and W^α are in the same Hⁱ-orbit
- Hom_{C₂}((*i*, α), (*i*, β)) = 0 if and only if W^{γ} and W^{α} are not in the same H^i -orbit

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Remark

- If G is a cyclic, then H^(i,α) is cyclic and ③ is true for any i, α
- If H^(i,α) is not cyclic, (i, α) is a projective representation of of H^(i,α). This is why we cannot prove the multiplicity n in (2) is 1
- If G not a group, we believe that the previous Theorem holds with G replaced by the group of all simple currents in $\mathbf{O}(\mathcal{C}^{KW})$, but we do not know how to prove this in general

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Remark

- Kac-Wakimoto (1988) studied the characters of (i, α) in coset constructions associated to affine Kac-Moody algebras
- Schellekens-Yankielowicz (1990) studied the characters of the diagonal coset constructions: field identification, fixed point resolution - how to write the characters of (i, α) as a sum of of characters of irreducible modules
- Fuchs-Schellekens-Schweigert (1995) used simple currents and out automorphisms of affine Kac-Moody algebras to study (i, α)
- Our work solved the fixed point resolution problem in general categorical coset constructions under the assumption that KW-set is a group. This assumption is true for many diagonal coset constructions

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Theorem

Assume

- $\bullet~V:$ simple regular vertex operator algebra of CFT type
- U, U^c : simple regular vertex operator subalgebras of V of CFT type such that $(U^c)^c = U$
- the conformal weights of irreducible weights of U, U^c are positive except U, U^c

Then

- $C_1 = C_U, C_2 = C_{U^c}$ are modular tensor categories which satisfy the conditions given in the categorical coset setting with A = V
- All results for categorical coset constructions hold for VOA coset constructions

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

Parafermion-like coset constructions

- Let V, U be as before. But we do not assume that U^c is rational or C_2 -cofinite
- $\mathbf{O}(\mathcal{C}_U)$ is a group

Theorem

• U^c is rational and C_2 -cofinite

$$|J_i| = |J_1| \text{ for any } i \in I$$

- **③** (i, α) is irreducible, and (i, α) ≅ (i, β) iff there exits (k, γ) ∈ KW such that W^α = W^β ⊠ W^γ
- $|\operatorname{irr}(U^c)| = \frac{|\Lambda_1||\operatorname{irr}(V)|}{|\operatorname{KW}|}, |\operatorname{irr}(U)| = |\operatorname{KW}||\Lambda_1|$
- $\begin{array}{l} \bullet \quad M^i \boxtimes M^j = \sum_{k \in I} N^k_{i,j} M^k \text{ and } W^\alpha \boxtimes W^\beta = W^\gamma \text{ for } i, j \in I, \ \alpha \in I_i, \beta \in I_j, \text{ then } M^{(i,\alpha)} \boxtimes M^{(j,\beta)} = \sum_k N^k_{i,j} M^{(k,\gamma)} \end{array}$

Coset Constructions and Kac-Wakimoto sets

Chongying Dong, Li Ren and Feng Xu

Content

Introduction

Basics

Fusion category

Categorical coset theory

Main results

THANKS